Polymer 43 (2002) 2513-2527

polymer

www elsevier.com/locate/polymer

Recovery of molecular weight distributions from transformed domains.
Part I. Application of pgf to mass balances describing
reactions involving free radicals

M. Asteasuain, C. Sarmoria, A. Brandolin™

Planta Piloto de Ingenieria Quimica (PLAPIQUI)-UNS-CONICET, Camino La Carrindanga km 7, 8000 Bahia Blanca, Argentina

Received 9 September 2001; accepted 3 December 2001

Abstract

We present a general framework for the application of a transform technique, probability generating functions (pgf), to mass balances that
describe free radical reactions, in particular synthesis or modification of polyolefins. Contributions of specific reactions to the mass balances
are identified and transformed separately, so that a modular approach is possible for the construction of the pgf balance equations for different
free radical processes. This simplifies the transformation step hopefully making the method useful to more people. Three examples taken
from the literature are transformed using this modular method showing its ease of use. In Part II of this work, the resulting transforms are
inverted to recover the complete molecular weight distribution. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Polyolefins are among the commodities with largest
production and sales volume. In view of their good proper-
ties and low cost, they are used in many applications, such
as automotive parts, films and sheeting, bottles and house-
wares. The advances in the material and production technol-
ogy of commodity plastics have improved their properties
leading to an increasing trend to use some of them to replace
engineering plastics. Among polyolefins, polypropylene
offers an excellent cost/performance ratio, ease of proces-
sing, desirable inherent properties, good environmental
image and the possibility of single-polymer applications
[1]. Polyethylene is also characterised by its excellent
impact strength, resistance to chemicals and by its low
production costs.

Molecular weight and molecular weight distribution
(MWD), among other molecular parameters, greatly affect
solubility and mechanical properties such as hardness,
impact strength, fatigue resistance and softening tempera-
ture. It is possible to produce polyolefins with specific final
properties by performing the polymerisation under particu-
lar operating and design conditions. An alternative and

* Corresponding author. Tel.: +54-291-486-1700; fax: +54-291-486-
1600.
E-mail address: abrandolin@plapiqui.edu.ar (A. Brandolin).

economic way to expand the range of applications of the
virgin resins obtained in a given reactor is modifying them
chemically or physically in a post-reactor process. Mathe-
matical models that represent these processes are powerful
tools for predicting operating conditions for materials
currently under production, for process optimisation and
process control. These mathematical models must be able
to solve the mass, momentum and energy balances that
describe the process of interest. The simplest model will
offer as results only species concentrations and process
productivity while the most complex ones will also provide
molecular information, such as molecular weight, MWD,
and concentration of branches and insaturations.

Different approaches to modelling are possible. For
example, deterministic mathematical models are based on
the solution of balance equations for the reaction compo-
nents. In systems involving polymer and radical reactions,
balance equations are functions of a discrete variable that
represents the degree of polymerisation of polymer species.
As the degree of polymerisation can theoretically grow
without bounds, the mass balances for all the polymerising
species form an infinite set of equations. Several techniques
are available to reduce their number. If the interest is on the
calculation of average quantities, the moment method is
appropriate [2—4]. Other techniques must be sought if the
calculation of the MWD is necessary.

Some authors prefer to assume the shape of the MWD and
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calculate its parameters from the first few moments [5,6].
Others resort to divide the molecular weight range in
regions and solve the corresponding distributions for a
given number of molecular weights [7—10]. The statistical
approach has also been employed [11], especially when
dealing with prediction of final MWD and gel points. The
application of Laplace transforms and generating functions
to mass balance equations in radical systems has also been
reported [12—14].

In this work, we demonstrate the use of probability gener-
ating functions (pgf) in the prediction of MWDs. These
transforms represent an attractive alternative to the Laplace
transform because they are defined for discrete distributions,
as those found in polymer science. Besides, no information
on the final distribution is needed. We have used pgf in the
prediction of MWD in several free radical reaction systems
[15-18]. Two basic steps are involved in the use of the
method: first, transforming the mass balances that describe
the process and solving the resulting finite system of equa-
tions; second, inverting the result to recover the MWD. The
transformation step may be cumbersome and time-consum-
ing if one applies it from the beginning for every single
system. However, if one recognises that there are many
common blocks to different free-radical systems, since
some reactions appear in more than one system, it is
possible to generalise the method. In this work we aim to
give the reader the necessary tools to apply pgf transforms to
mass balances in a generalised way. To this purpose, we
consider that the following terms may appear in the mass
balances: accumulation, input/output and reaction. With
respect to the reaction terms, we take into account indivi-
dual reactions that have been proposed to take part in poly-
merisation systems as well as in polyolefin reactive
modification. We intend to cover as thoroughly as possible
all the kinetic steps that may appear in these systems.

Finally, to illustrate the pgf application to mass balances,
we selected three of the examples presented by Miller et al.
[12], transformed them and solved for the corresponding pgf
curves. The resulting MWD obtained by inversion of those
pef are discussed in Part II of this work [16].

2. Usage of the pgf transform

Given any discrete probability mass function p(n), its
pef is defined as >,2(7'p(n), where z is the pgf
‘dummy’ variable. If one wants to find the pgf of the
MWD, this definition must be applied to the probability
that the degree of polymerisation has a value of n. This
probability measures the chance that a molecule of length
n is being selected when looking at molecules according to
their MWD. Three probabilities are the most common when
working with MWDs. If all molecules have an equal chance
of being selected, the number probability is used and the
number MWD results. If all units of mass have an equal
chance of selection, weight probability and weight MWD

are involved. If the quantity with equal chance is the
product of mass times molecular weight, the ‘chromato-
graphic’ MWD and probability are to be used. Chroma-
tographic distributions are what one gets as a result of
analysis by chromatography such as size exclusion chroma-
tography. Egs. (1)—(3) define these probabilities in a general
way, where T, stands for a polymer (P,) or radical (R,)
molecule.

Number probability:
(7] (7,1
PEWN =n)= " =" M
Sirg
n=0
Weight probability:
n(7,] n[T,]
PY(N =n) = — = )
> nlTy,] :
n=0

Chromatographic probability:

2 2
PO =y — Tl _ 1T )

o0

S Wt v
n=0

Summarising Eqs. (1)—(3), it may be expressed generically
as in Eq. (4)

P?(N — n) — na[Tn] — na[Tn] ,

(e8]

fora=0,1,2
U,

> nIT,]

n=0

“

Eq. (4) may be applied both to polymer and radical distribu-
tions. P?(N =n) stands for the probability—number
(a =0), weight (a=1) or chromatographic (a = 2)—that
a polymer molecule or a radical molecule has degree of
polymerisation n. The superscript is there to remind us of
a previous notation convention, where probabilities for
polymer molecules have no superscript (as in P,(N = n)),
while probabilities for radicals have a superscript (as in
P,(N=n)). Uy, U, and U, are the first three moments of
the chain length distribution of polymer (M,,M;,M,) or
radicals (Y,,Y,,Y,). Brackets are used to indicate molar
concentrations of the different components.

Different conventions about the length of the smallest
polymer molecule can be adopted and have been used in
the literature. For example, it may be assumed that a mole-
cule must have at least two monomer units in order to be
counted as a polymer molecule, that is n = 2. If, however,
the one-monomer molecule is considered as part of the
polymer distribution then n = 1. This affects the summa-
tions in Eq. (4). In order to gain generality it is convenient
to be able to perform the summations in Eq. (4) starting
from n=0. In order to accommodate the different defini-
tions of minimum polymer length, polymer molecules with
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chain length O (or O and 1) must be considered, whose
concentrations are always equal to 0.

The situation for the radicals is different since radicals of
chain length unity do exist. In some mathematical models of
polymerisation reactions, radicals of chain length zero with
nonzero concentration are also considered. They are derived
from initiator species. If this is the case, the numerator in
Eq. (4) must be changed for (Mwg /Mw),)“[Ry] when n = 0.
Mwg, is the molecular weight of the radical of chain length
0, and Mw,, is the molecular weight of the repeat unit.
Again, if the zero-length radical does not form part of the
radical distribution in a given polymerisation, its concentra-
tion is considered to be 0. Later on we will multiply several
equation terms by n“ and then add from n=0 to c. We
express this procedure as Y ,—,n* for simplicity but, when
the sum involves radicals the factor of the first term will be
(Mwpg, /Mw),)* and not 0“.

When dealing with a discrete distribution, such as the
chain length distribution where the independent variable is
the degree of polymerisation, Miller and Macosko [19]
define the pgf for a distribution as the linear operation
shown in Eq. (5)

Dy =D IPFN=n), a=0,12 )
n=0

When applied to a polymer distribution, our previous nota-

tion stated @ = ¢, and @ = ¢ for a radical distribution.
Eq. (6) shows the pgf first derivative [20], which will be

useful in the development of the pgf balances

IPya@) 1

> n'PY(N = n),

- n=0,1,2 (6)
9z Z 5

3. Structure of balance equations to be transformed

In a reacting system, component balance equations have a
general structure. For example, one of the terms corresponds
to the accumulation of the component. The others are
composed by the sum of the contributions of the inputs
and outputs of the component plus the net generation of
the component due to each of the reaction steps.

Accumulation and input/output terms are shown in
Table 1. Several usual kinetic steps (Egs. (7)—(19)) that
may appear in polymerisation systems are also listed in
Table 1. The symbol k represents a kinetic rate constant.
The requirement of length n =2 for polymers is implicit
in those kinetic steps.

The initiation reaction (Eq. (7)) corresponds to a first
order, thermal peroxide (I) decomposition. Parameter 6
indicates the number of initiation radicals into which the
organic peroxide decomposes, which is usually 2 or 4. Para-
meter f is the initiation efficiency. The use of peroxides is
common to initiate radical polymerisations and modifica-
tion of polyolefins. If the initiation reaction consists of the
direct reaction of monomer with initiator Eq. (8) results.

The propagation reaction (Eq. (9)) refers to the addition
of a monomer unit (M) to a growing radical chain (R,). This
is a reaction that takes place in every addition polymerisa-
tion. No by-product results, so the mass of the repetitive unit
is the same as that of the monomer. As customary in this
field, we assume that radical reactivity is independent of
chain length.

The growing radicals lose their activity when they react
with each other to form a paired-electron covalent bond
leading to a dead polymer molecule. A termination by
combination occurs (Eq. (10)) if a coupling of the radicals
takes place. This reaction may occur both in polymerisation
processes and in post-reactor modifications. For systems
where polyethylene or polystyrene is involved, this is the
main termination step. Termination by disproportionation
occurs (Eq. (11)) when two radical molecules react produ-
cing a hydrogen transfer. Both molecules lose their activity
but remain separate, one with an unsaturated end and the
other one with a saturated end. This reaction takes place in
some polymerisation systems, for example when producing
poly(methyl methacrylate). It has also been proposed to
occur in post-reactor processes where polypropylene is
modified.

More than one form of chain scission and thermal degra-
dation have been proposed for polymerisation [21] and post-
reactor modification reactions [9,10,22—-24]. We present
here three of them (Egs. (12)—(14)). The reactions shown
in Egs. (12) and (13) are more likely to appear in post-
reactor modification of polyolefins. The one shown in Eq.
(14) has been proposed to take part in the high-pressure
polymerisation of ethylene, where a backbiting reaction
occurs. The presence of this mechanism is claimed to be
crucial to be able to predict molecular weights in this
process [21]. In this type of reaction, the kinetic constants
are commonly reported per unit of reactive site. The total
number of reactive sites that may react must multiply them,
in each case. To maintain generality, for an R, (or P,,) mole-
cule we account for (8n — ) sites. 8 and vy are positive
integers that allow for different molecule configurations.

Hydrogen abstraction (Eq. (15)) has been proposed to
occur in reactive modification of polyethylenes [9]. In this
reaction, initiation radicals randomly abstract protons on the
polyethylene backbone. The kinetic constant for this step is
commonly reported by reactive site unit. To keep generality
we consider that the number of reactive sites in a polymer
molecule P, is proportional to n(pn), and that the initiation
radical R, belongs to the radical distribution. If this were not
the case, R, would have its own balance, and its related
terms would not appear in the general radical balance.

Solvents or chain transfer agents such as low molecular
weight hydrocarbons (i.e. propene, butene) are used to control
molecular weight in polymerisation reactions. It provides a
way of deactivating radicals. Their presence affects mainly
the number-average molecular weight. Eq. (16) represents
the corresponding reaction. We assume that the resulting
radical R, has the same reactivity as any of the macroradicals.
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Table 1

Accumulation, input/output and kinetic steps in polymerisation reactions. Contribution to balances of radical and polymer of length n (n =0,...

M. Asteasuain et al. / Polymer 43 (2002) 2513-2527

Kinetic step

Radical balance

Polymer balance

Accumulation

Input/output

Initiation

Tky

I— 6R, (7)
1+ MR, (®)

Propagation

kp
Rn + M_>Rn+1

n=20,...,0

Termination by combination

klc
R, +R 5P,

10)

d{VIR,1}
dt

N,

out

Nin
> [RulinFyin, = D [RFyou,
i=1 i=1

Ofka V118,

JkaVIIIM]S,,

kyVM[=[R,] + [R,—11(1 = §,0)]

—ke V(Yo — [RoDIR,](1 = 6,0)

Termination by disproportionation

kg
R, +R.,—P,+P,

n=2..0;r=2..0

a1

Yo — [Ro]
_kldV ] [Rn](l - 5/1,0 - 5n,l)

U

Chain scission/thermal degradation

kg
R,—P, +R,_,

12)
n=2,..,0
ka
PVI _>Rr + Rn*r
(13)
n=2,..,0
Kuay
R,—P,+Ry
(14)
n=2,..,0
Hydrogen abstraction
Kig
P, + Ry—R,
n 0 n (15)

n=2,..0

Chain transfer to solvent

R, +S5p, +R,
(16)

n=2..0

—(Bn = Y)IR,]

+ > IR

r=n-+1

kSV (1 - 6n,() - 8}1,])

kaV > [P = 8,0)

r=n+1

_[Rn](l - 3n,O - 3rLl)
kaV/
+(¥y — [Rol — [R1 18,0

[ —uM;[R,18,0 ]
khav
+IJ’n[Pn][R0](1 - BnA,O - 6rL,l)

[ =[R,(1 = 8,0 = 6,1) ]
ks VS
+(Yy — [Ro] — [R1]d,0

d{vir,1}
dt

N, N,

in out

> PulinFyin, = D [PiFyou,
i=1

i=1

n—1

1
2heV 2 IR IR, 10 = 31 = 8,)

Yo — [R
kth(( o — [Rol

)[Rn](l - Sn,O - Sn,l)

1

ksV Z [Rr](l - 811,0 - an,l)

r=n+1

—kaqV(Bn = YIP,I1 = 8,0 = 6,1)

kaVIR,1( — an,O - an,l)
—kia V[P, 1[RoI(1 — 8,0 — 8,1)

klrsVS[Rn](l - 6n,O - 6&1.1)
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Table 1 (continued)

Kinetic step Radical balance

Polymer balance

Chain transfer to monomer

K

Rn + M—'P,, + Rl _[Rn](l - Sn,() - 5;1,1) ]

kym VM
an [ +(¥y — [Ro] — [R 1),

n=2..0

Chain transfer to polymer
—[R,1(BM; — yMy)

tp.

P,+R,—R,+P, ktrpv[

r

BM, — YMy
—[R,]
—(2B = yIP,]

n=3,..,00, r=2..,0 ke V

r=n+2

](1 = 8,0 = 1)
+(Bn = YIP,I(Yo — [Ro] = [Ri])

)(1 = 80 — 1)

+(Yo = [Ro] = [R{D) D [PI(1 = 8,0)

kym VM[R,J(1 — 8,0 — 8,1)

[ —(Bn = IP,1¥y — [Rol
trp

](1 = 8,0 — 8u1)
—[R,]) + [R,J(BM, — yM,)

—(Yy — [Ro] — [R\D(Bn — p)IP,]
(1= 8,0 = 81 — 8,2)
BM, — yM,
[R,]
—(2B = y)[P,]

keV )(1 = 80~ 81)

+(Yo = [Rol = [R{D > [P = 8,0 = 8,1)

r=n+1

The transfer to monomer reaction (Eq. (17)) is also a
reaction associated with polymerisation processes. Depend-
ing on the particular polymer being produced, and the
temperature and pressure conditions of the process, this
reaction will be more or less important.

The first of the chain transfer to polymer reactions
presented (Eq. (18)) is the one that most often appears in
literature. This reaction has been used to be able to predict
long-chain branching and high polydispersities typical of
polyethylene processes [21]. However, some authors have
proposed that in the reactive modification of polyolefins,
chain transfer to polymer occurs together with a scission
step [25], as Eq. (19) shows. Every time a chain transfer
to polymer occurs, a new long branch is formed. The kinetic
constant for this reaction is usually reported per unit of
reactive site, so we made the same assumptions here that
were made for the chain scission reaction.

From each one of the reaction steps in Table 1, terms for
the polymer and/or radical mass balances arise, as shown in
the last two columns of this table. From inspection of these
balance terms, it appears that it is possible to group them in
some general structures. All of these structures are repre-
sented in the first column of Table 2. They are represented
as the product of a factor a times a function of radical and/
or polymer concentrations of certain chain lengths. « stands
for all the variables that are not themselves functions of
chain length n. Examples would include monomer, solvent
or initiator concentration, kinetic constants, and the like. As
already explained, concentrations [R,] and [P,] are repre-
sented in a general way by [7,]. By these means, we only
present the terms with different structure, without discrimi-
nating from which kinetic step they come from. Structure is

what matters when performing the pgf transformation. Note
that accumulation and input/output terms are also shown in
the first two rows of Table 2.

4. pgf transformation

The general method to carry out the pgf transformation
consists in multiplying the balance terms by n“z",a =0, 1 or
2, and adding for all possible values of n. The result is
reorganised in terms of the various pgf by means of the
definitions of the pgf and the different probabilities. This
reorganisation may lead to moment definitions for radical
and polymer distributions, which are presented in Egs. (20)
and (21)

had M w R a
Y, = MWH( °)wL
2 o

M

a=0,1,2 (20)

M, = n[P,],
n=0

a=0,1,2 ey

For the remainder of this work, ¥y ,(z), P,(N = n) and M,
will stand for the pgf, probabilities and moments of the dead
polymer distribution ¢y ,(z), P,(N = n) and Y, will stand
for the pgf, probabilities and moments of the radical distri-
bution. When we deal with the generic species that represent
polymer or radical the corresponding nomenclature will be
Dy ,(2), PY(N = n) and U,

The process of obtaining the pgf transform of balance
equations can rather be tedious and time-consuming.
Table 2 (second column) presents the pgf transforms of
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each of the terms that contributes to the mass balances.
Although we have tried to be comprehensive, Table 2
should not be regarded as absolutely complete.

Details on the transformation procedure performed to
obtain the results shown in Table 2 are given in Appendix
A. If a different kinetic step from those presented in Table 1
appears, its pgf transform will have to be deduced following
the procedures explained there.

To illustrate a practical application of this technique we
present some polymerisation examples in Section 5.

5. Polymerisation examples

We have chosen three of the theoretical examples
presented by Miller et al. [12] to illustrate how to apply
the previous derivations to transform the mass balance
equations of a polymerisation reaction into the pgf domain.
The resulting sets of differential equations are solved using
the standard available numerical methods for stiff systems
[26]. The recovery of MWDs from the resulting pgf is
discussed in Part II of this work.

5.1. Living polymerisation

This simple system presents only one reaction, propaga-
tion and is described by Eq. (9) in Table 1. For simplicity,
monomer concentration is considered constant. Introducing
the dimensionless time, 7= kp[M]t, the resulting mass
balance equations for an isothermal batch reactor are

d[R,
ol — iyl @)
.
d[R
e L R L (23)
T

These two equations may be condensed into just one by
using Kronecker’s delta 8, as:

d[R
[d"] = —[R,] + [R,-11(1 = 8,).
T

where [Ry] is the initiator concentration. The initial condi-
tions are [Ryl,—p = RE)O and [R,],—g=0n = 1.

To transform this equation into the pgf domain, we take
advantage of the information presented in Table 2. The
accumulation term transform can be found in row 2.1 of
this table keeping in mind that the volume is constant in
this model. The right hand side terms of Eq. (24) match the
ones in rows 2.8 and 2.9 of Table 2, with « = —1 and
a = 1, respectively. Therefore, the transform of this equa-
tion will be

w = —(Yodno(@) + 2(Yodno(2)) (25)

To obtain the initial condition for this equation, Egs. (4) and
(5) are applied to the initial conditions of the original system
obtaining the result (Y ¢y 0(2)) =0 = RBO.

n=0 (24)

Eq. (25) may be solved analytically for the given initial
condition, obtaining:

Yoy o(2) = R 717 (26)

As Y, is equal to RE)O in this system, the value of ¢y (z) is
readily available to be used in the subsequent inverting steps
used in Part II.

For comparison purposes we also consider the case
presented by Miller, where Eq. (22) is neglected. The
analytical solution for this system [12] is:

RYe"™ ™ n<r
[R,](7) = 0 27)

n>rT

Miller found the value of [Ry] by extrapolation. This
particular expression may not be found in the table.
Hence, we apply pgf and probability definitions (Egs. (4)
and (5)) to Eq. (27) to obtain an analytical expression for the
pgf transform. Only the number pgf is needed in order to
compare with Miller’s results, that is for a =0 in Eqgs. (4)
and (5). The resulting transform is

7+1 a7
Yobo(@) = RS’(L) (28)
ze—1

The results of its inversion are shown in Part II.

5.2. Simple addition polymerisation

The kinetic equations that describe this process are initia-
tion as described in Eq. (8), propagation as in Eq. (9) with
n =1, and a termination by transfer to monomer similar to
Eq. (17), where the outcome of the reaction is a single
molecule P,;;. The mass balance equations for this
system are

Monomer

d[M]
dt

Radical R,

= —k[M] — (k, + k)Yo[M] (29)

d[R,]
dt

- kp[M]([Rn](] - 8}1,0) - [Rn—l](l - 6/1,1 - 5}1,0))

n=0,...,0 (30)

= k[M]16,1 — kR, JIM](1 — 8,)

Radical moment

% = k[M] — kYo[M] (€19

Polymer P,

dip,]

dr = kt[Rnfl][M(l - 811,() - 6n,l)

n=0,...,00 (32)
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Polymer moment

% = kYo[M] (33)
with the following supplementary conditions: [M],—o =
Mg, [Rl—=0n=1, [Ploy=0n=2 [Roly,=0,
[Poly; = 0 and [P]y, = 0.

The pgf transforms of these equations are built matching
each of their terms with their equivalents in Table 2 (see
rows 2.4, 2.5, 2.8, 2.9, 2.10). It must be kept in mind that as
the radical of chain length 0 as well as polymer of chain
lengths 0 and 1 do not exist in this model, they must be
assigned a concentration of O in the expressions in Table
2. Then, the pgf transform of the radical and polymer
balance are:

W = k[M]z + k[M1(z = D(Yoy0(2)) — k[M]
X (Yodn0(2) S
SN a1y 2 35)

As there is neither polymer nor radical at the beginning of
the reaction, the initial conditions for the differential equa-
tions of the pgf transforms will be zero. The transformed
system of equations to be solved is then composed of
Egs. (29), (31), (33)—(35), with the initial conditions:
[M),—y = My, Yolmo =0, Mgli—g = 0. Yoy (@)= =0
and M0¢N’0(z)|,:0 = 0. This system was solved with an
appropriate numerical method for ordinary differential
equations [26].

Miller et al. [12] use a slightly different approach. They
consider the monomer as a polymer of chain length 1, and
include it in the polymer chain length distribution. In this
case, the polymer mass balance equation changes to

d[P
Tl = GlR, P = 8,0) ~ kP18,
(36)

- (kp + kt)YO[Pn]Sn,l

n=20,...,0

The pgf transform of this equation is

AWMy (@) _ k([(M1z(Yo by 0(2)
dr 7

— kzPy] = (ky + k)YolPy]

with initial conditions [Pi]—o = P\°, Yil—g =0,
(Yodno(@)li—o = 0. and (Mothy,o(2))li—g = 2P.

However, this methodology introduces an important
discontinuity in the polymer chain length distribution,
since the concentrations of monomer and polymer of two
or more monomer units differ in several orders of magni-
tude. This appears to be unsuitable for the method of pgf
transformation of the balance equations. As we show in Part
II of this work, only one of the inversion methods tested can

overcome this problem.

In all cases a suitable numerical method was used to solve
the system [26].

Both the living polymerisation and simple addition poly-
merisation examples present two features that allow the
direct integration of the mass balance equations without
any transformation: (a) the balance equation for component
n depends on components of smaller length, and (b) the
entire distribution can be described with values of n up to
approximately 100. Therefore, the distributions can be
obtained by solving about 200 differential equations, a
reasonable number. We take advantage of these features
to obtain nearly exact distributions that may be used to
compare with the ones recovered through inversion.

5.3. Linear free radical polymerisation

This polymerisation is described by the following kinetic
system, which is essentially included in Table 1. It considers
initiation (Eq. (7)), which leads to two (6 =2) initiation
radicals Ry. It also includes propagation (Eq. (10)), chain
transfer to solvent and monomer (Eqgs. (17) and (18)), and
termination by combination and disproportionation (Egs.
(11) and (12)). The smallest radical and polymer both
have unit length.

To be consistent with Miller’s approach we only consider
the number distribution. Assuming quasi-stationary state for
the concentration of initiation radicals, the resulting mass
balance equation system is:

avin _
a kv (38)
@ = —(2fkqVII] + (kp + kgm) VIM]Y,) (39)
U — w“
dr
@ = kg VIT18,0 + ko VIMIIR, 111 — 8,0)
— k,VIMI[R,] — (kys[S] + kym[MDV[R,]
+ (ktrs[S] + ktrm[M])VY()Sn,() - thOV[Rn]
n=0 @n
W = (ks S] + kum[MDVIR,] + kg VIR,1Y,
+ &an (R, ,1IR,] (42)
2 r=0 " '
n=0
) _omevin - kvy @)

dr
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Here k is the sum of the rate constants for termination by
combination and by disproportionation, k. and kg, respec-
tively. The rate of change of volume (dV/dr) is given by

dv_ eVQfkalll + (ky + ki) IM]Y))
d (M=

(44)

where € is the volume contraction factor. The initial condi-
tions are Vi—g = V’, [Ml,—g = M, [Il—y = I, [S],=o =
80> [Yolizo =0, [R,]i= =0, and [P,].o =0. For all
species, n = 0.

If we match the terms in Eq. (41) with their equivalent
ones in Table 2 (rows 2.1, 2.3, 2.8 and 2.9) we can build the
transform of this balance, which is

v dl(Yodn 0(2))]

dr = kadv[l] + (klrs[s] + ktrm[M])VYO

- [kp[M](l = 2) + ki [ST + ki [M]

dv
T kYo lV(Yodno(2) — (Y()d)N,()(Z))E
(45)
Following a similar procedure with Eq. (42) one obtains the
transform of the polymer balance

M,
vw — (kIS + k[ M1 + kg Yo)V (Yo dyo(2)

k
+ S VIModuo@)” = [Rol(Yodbyo(2)]

dv
— Moy o) - (46)

The initial conditions for Eqs. (45) and (46) are:
Yooy 0(2))li—o = 0 and (Mo 0(2))|—o = 0, respectively.

Finally, the system of differential equations to be solved
is composed of Egs. (38)—(40) and (43)—(46). A suitable
numerical method was used to obtain the solution [26]. The
obtained pgf values are used as data for the inversion meth-
ods tested in Part II of this work.

6. Conclusions

The pgf transforms of different balance equations corre-
sponding to polymerisation reactions were deduced. By
these means we develop a general framework for the use
of pgf in prediction of MWDs

The results are presented in a way that will allow a quick
transformation of most new balance equations provided
their terms belong to any of the general expressions we
summarise in this paper. However, if this is not the case,
we intended our deductions to be detailed enough to guide
the reader in performing his or her own transformations
without serious difficulties.

The pgf transforms of the balance equations constitute a
very promising tool for calculating MWD. In Part II of this

work, we analyse the capabilities of some of the available
numerical inversion techniques obtaining very good MWD
recoveries.
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Appendix A. Calculation of pgf transforms
A.l. Accumulation term

Row 2.1 in Table 2 show the accumulation term for a
polymerising species [T,,] for the general case where volume
(V) is variable as

d{VIT,1}

=0,1..., Al
a % (A1)

This expression is multiplied by n“z" and then a summation
for all n from zero to infinity is performed. These two steps

will be referred to as ‘multiplying by > ,—(n?Z" in the
remainder of the appendix.
d> n"{VIT,1}
n=0
A2
" (A2)

Recalling the definition of derivative of a product and
making the appropriate substitutions so that probability defi-
nitions appear Eq. (A3) is obtained. Note that from Eq. (4),
it is possible to show that U,PZ(N = n) = n°[T,]

© dv d!(z naz"[Tn]}
a_n n=0
— +
;n Tl +V <
d{z U,z PP(N = n)}

n=0
dr

i av
=N UIPIN=n— +V
< dr

N v d{Ua > ZPYIN = n)}
=1, S PPN=n)— +V n=0
“ ; “ dr dr

(A3)

for U, is independent of n. Recalling the definition of pgf
given by Eq. (5) the accumulation term transform is finally
expressed as

d¢v) +V d(Ua qI)N,a(Z))
dr dr

U, Dy o(2) (Ad)
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A.2.6,;(j=0, 1, 2) terms

Terms where Kronecker’s delta appears are used to
subtract some of the first terms in an infinite sum. For exam-
ple terms like the ones in row 2.3 and 2.4 in Table 2 may
represent the contribution of the initiation reaction to radical
balances. Kronecker’s delta §,,; only allow the term corre-
sponding to n =j.

If all variables that do not depend on chain length
are included in constant athen the term has the general
form

ad,, (AS)
After applying the operation > ,~(nz" a =0,1,2, to Eq.

(AS), Eq. (A6) is obtained
Z n‘7'ad,; = aZj (A6)
n=0

Keep in mind that in all the cases where j = 0, j* should be
replaced by (Mwyg,/Mw),)* as already indicated in the text.

To obtain the pgf transforms of terms shown in rows 2.5—
2.7 and 2.16-2.18 in Table 2, the same procedure should be
followed obtaining

Z naznanb[Tn]an,j = az’ja+b[7}] (AT)
n=0

where b =0 in rows 2.5-2.7 and b =1 in rows 2.16-2.18.
The same considerations apply for j* and for j**°.

For the terms with the structure shown in rows 2.20 and
2.21, we start from:

o0
w3 e
n=0

Replacing the definitions of moments given in Egs. (20)
and/or (21) into Eq. (A8), Eq. (A9) is obtained

S (Ts, —ae S (T, (A8)

m=n+j m=t+j

00 tt+j—1
a'? S [Tmlzar"z’(Uo— > [Tk]) (A9)
k=0

m=t+j

Again, if =0 one should act with 7 as already explained
for j=0.

The results shown in rows 2.10, 2.12 and 2.13 were
obtained similarly.

A.3. [T,], n[T,] and [T,—,] terms

Terms proportional to [7},] (row 2.8) and [T,—;] (row 2.9)
appear in the contribution of propagation reactions to the
mass balance of radicals. The term in row 2.8 also appears
frequently in the contribution to radical and/or polymer
balances of termination, chain scission, hydrogen abstrac-
tion and chain transfer reactions. Terms proportional to
n[T,] (row 2.15) appear in the contributions to radical or

polymer balances of chain scission, hydrogen abstraction
and chain transfer to polymer reactions where the kinetic
constants are given per unit of reactive site. First, we
consider the derivation of term in row 2.8

ofT,] (A10)

Following the procedure used in the previous section this
term transforms into

n‘Z'[T,] = aU, Y 2'PJ(N = n) = a(U, Py 4(2)

(o)

a
n=0 n=0
(A11)
Now we consider the term in row 2.9:
alT,1](1 = 8,p) (A12)
Multiplying Eq. (A12) by > > n®Z" yields
ad n'Z'[T,1( = 8,0) = a > n'2"[T,_] (A13)
n=0 n=1

At this point, it is convenient to make a change of variables.
Taking » = n — 1, Eq. (A14) results

a (r+ D= a2 (r+ DT, (Al4)
r=0 r=0

This transform will have different forms depending on the
value of a. It will be called gpt(a), and is found as follows.
Here we make use of probability and pgf definitions as in the
previous cases.

l.a=0

aZiZ’[Tr] = azizr(UoPae(N =7)) (A15)

gpt(0) = az(Uy Py o(2)) (A16)

2.a=1

az io (r + DJ(T,] = az[ io rZ[T,] + ioz'[Tr]]

- az[i Z(uPF W =) + iz’(UOPS‘?(N = r))]

- - (A7)

gpt(1) = az[(U; Py 1 (2) + (U Py o(2)] (A18)
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az ) (r+ 1*Z[T,]

r=0

= az[ ﬁ 2T +2 i r (1,1 + i zf[m]
r=0 r=0 r=0
= az[ > (Usz (N = r)) + 22 (UlPi‘%N = r))

r=0 r=0

r=0

+ Zz (UOPO N = r))] (A19)

gpt(2) = az[(Uy Py () + 2(U; Py 1(2)) + (U Py 0(2))]
(A20)

In what follows we proceed to obtain the transform term
shown in row 2.16 starting from Eq. (A21)

an|T,] (A21)

Multiplying Eq. (A21) by >~ (n“Z" and then expressing
explicitly the term corresponding to n = 0 gives

— a+l_n _ - atl_n MWTO ol
ad nTl=adn ST+ ol o) (7]

n=0 n=1 M
(A22)
After rearranging we obtain:
oo Mw a+1
a+l_n Ty
a 7'T,] + a( ) [To]
2" My ) 1T
00 MWT a+1
= (U LPEN=m)+ o —2) [T
a,; nz ( at a ( I’l)) 0[( MWM ) [ 0]
U, P Mwr, \**!
- aZ(M) T a(ﬂ) [T,] (A23)
aZ MWM

A.4. Combination terms

The contribution of the termination by combination term
to the polymer P, balance gives a term of the form shown in
row 2.11 in Table 2:

n—1
a) [1,-T] (A24)
r=1

The transform is deduced as follows. We start from

n—1

@ i S (T, T, (A25)
n= r=1

Now we extend the sum for r from O to n and subtract the
terms corresponding to ¥ =0 and n

a[Z n'?" > [T, T,1(0 — 8,9 — 6,,,1)]
n=0 r=0

2[T,] Zn

- a[ > Y T, IT,] —
n=0 r=0 n=0

] (A26)

Next we invert the order of the summations remembering
that > 20 >, => 20 > and then performing the
change of indexes t = n — r. The result is

[Z > n''T, r][T]_Z[To]Z”aZ"[T ]

r=0 n=r

= a[Z S+ T — 20T] Zon“z"m]]

r=0 =0
(A27)

The transform of the last sum in Eq. (A27) is simply
2[TolU, Py ,(z). The first term will yield different results
depending on the value of a. Therefore, the transform of
this term will be called tct(a) and is deduced in the following
way:

1.a=0

azz 13 T]_aZzPO(N—r)szP()(N—z)

=0 =0
(A28)

tct(0) = AUy Py o(2))* (A29)

2.a=1
a ZZ[T]ZZI[T]+ZZr[T]ZZ[T]] (A30)
r=0 =0 r=0
ol S ZUPGIN =1 ZUPTN =1
| 0 =0

+ ZOZ’UIPEB(N = r)zoz’UOP?(N = t)] (A31)
r= 1=

tet(1) = 2a(Uy Py o(2))(U; Py, (2)) (A32)
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[\

3.a=

a[ S IS AT 23 AT S AT
r=0 =0 r=0 t=0

+> 7Py z’[T,]] (A33)
r=0 =0

a[ S TUPTN =1 ZUPT(N =n—r)
r=0 =0

+2> JUPYIN =1 JUPTN=n—r
r=0 =0

+ > TUPTIN =1 UPT(N =n— r)]
r=0 =0

(A34)

tet(2) = 2a[(Yoby.0(2)(Yady2(2) + (¥ b1 (2)°]
(A353)

Finally, Eq. (A36) summarises the transform of the term in
row 2.11 of Table 2

tet(a) — 2a[To)(U, Py 4(2)) (A36)

To obtain the pgf transform of the analogous term in row
2.14, the same steps must be followed.

A.5. Terms of the form Y s_, [T, j =1 o0r2

These terms appear as part of the contribution of chain
scission and transfer to polymer reactions to mass balances.
The pgf transforms of these terms are presented in rows 2.19
and 2.22 of Table 2. In what follows we show the deduction
of the pgf transform of row 2.19

a > [T,] (A37)

m=n+ 1

Multiplying this term by Y o> n“z"

o0 o0

a Y n' Z (T,] (A38)

n=0 m=n + 1

To transform the second summation, the relationship

y — 1

-

> > -

x=0 y=x+1 y:

M

1 x=0

is used giving as a result

00

oo o m—1

a Z nZ" Z [7,] =« Z Z n'Z"[T,] (A39)
n=0 m=n+ 1 m=1 n=0

Substituting with the probability and moment definitions

and extending the sum for m to 0, this expression turns into

© m—1

a> > n'UyPy(N = m) (A40)
m=0 n=0

This yields different transforms depending on the value of a.
This term will be called gst(a).

l.a=0
) m—1
aly > PFN=m) > 2"
m=0 n=0

0 1=
= al, ZPE‘E(sz)%

m=0

o0

= o0 (Z PEN=m)— > Z"PJ(N = m))
-z m=0 m=0
(A41)
1
gst(0) = a——(Uy — (UyPn(2))) (A42)
(I -2
2.a=1

) m—1
a( ZO UsPE(N = m) ZO nz”)

0 o Zerlm_me_Zerl +z
= a|Uy > PY(N = m) T

m=0

(A43)

From Egs. (1)—(4), it is possible to show that U IPGIB
(N = n) = nUyPY(N = n) and U,PY(N = n) = n*UyP¢
(N = n). By using these equalities in Eq. (A43), Eq. (A44)
is obtained

1 - m S m
=QW(ZZZ UIP?(N=I’)’Z)_ ZZ UIP?(N

m=0 m=0

=m) =z PUPF(N =m)+zUy Y PG(N = m))

m=0 m=0
(A44)
1
gst() = a———[(z — DU, ®y,1(2)) + 2(Uy
(1-2)
— (Uy @y ()] (A45)
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3.a=2
0 m—1
a( Z UOPg)(N =m) Z nzz”)
m=0 n=0
= a( > UpPG(N = m)
m=0

(_2Zm+2m + 2Zm+lm + Zm+2 + Zerl + zm+2m2 _ 2Zm+lm2 + meZ _ Z2 _ Z)
z—1)?

) (A46)

Proceeding again as with a = 1, we obtain Eq. (A48)

0 m—1 0 m—1
a(mz_o UyPY(N = m) r;) n’z ) a(mz_o UoPY(N = m) r;) nzz")

= a(ﬁ( _ zgzmﬂmUopge(N =m) _ aﬁ( _ Zszioszle@(N = m)
+ Q;Z’"HmUoPga(N =m) + QZ;Z’”UIP?(N = m)
+ rgZ’””UoPSe(N = m) +7 gzmuopé‘?(zv =m) + zgz’"UOP??(N = m)
+ miozmﬂ UoP5 (N = m) + 7 miszsz@(N = m)
N gozmuszOP?(N =m) _ Zngsznge(N —m)+ gsznga(N = m)
_ 2’§zm+]m2U0PSG(N =m) _ szib UOPSB(N —m)—z— ; UOPSG(N _ m))
' mioz’"szoPga(N - ~ Y% _1 1)} ( — 227U Dy 1(2) + 22U, Dy 1 (2)
- mio ZUPG(N = m) + Z2Ug @y () + 20Uy Py o(2) + 2U, Dy (2)

00 o - 2ZU0®N,0(Z) + Uz(pN,Z(Z) - Z(Z + I)UO)
— > 2WyPy(N = m))) (A47)

m=0

(A48)
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Rearranging Eq. (A48):

1
gt2) = a5l - DX (U, Py 2(2))

+ 2z2(z — 1)U, Py 1(2) — 2z + DUy Py 0(2)

+ z(z + 1)Up] (A49)

To obtain the transform of the term in row 2.22, a totally
analogous procedure must be followed. In this case, one uses

the property that ¥ Y521, = Yoy 3
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